(3)高温阶段(T烧二0.5一。.85T熔)。这是单元系固相烧结的主要阶段。扩散和流动充分进行并接近完成,烧结体内的大量闭孔逐渐缩小,孔隙数量减少,烧结体密度显著增加。保温一段时间后,所有性能均达到稳定不变。
(2)多元固相烧结:组成多元系固相烧结两种组元以上的粉末体系在其中低熔组元的熔点以下温度进行的粉末烧结。
多元系固相烧结除发生单元系固相烧结所发生的现象外,还由于组元之间的相互影响和作用,发生一些其他现象。对于组元不相互固溶的多元系,其烧结行为主要由混合粉末中含量较多的粉末所决定。如铜一石墨混合粉末的烧结主要是铜粉之间的烧结,石墨粉阻碍铜粉间的接触而影响收缩,对烧结体的强度、韧性等都有一定影响。对于能形成固溶体或化合物的多元系固相烧结,除发生同组元之间的烧结外,还发生异组元之间的互溶或化学反应。烧结体因组元体系不同有的发生收缩,有的出现膨胀。异扩散对合金的形成和合金均匀化具有决定作用,一切有利于异扩散进行的因素,都能促进多元系固相烧结过程。如采用较细的粉末,提高粉末混合均匀性、采用部分预合金化粉末、提高烧结温度、消除粉末颗粒表面的吸附气体和氧化膜等。
活化烧结过程烧结过程是一个物理化学反应过程,其烧结反应速度常数K可用下式表示[1]:K=AexP(-Q/RT)式中A为包含反应原子碰撞的“频率因素”在内的常数;Q为烧结过程活化能;T为烧结温度。由上式能够准确的看出,提高烧结温度T、降低烧结活化能Q和增大A值均可提高烧结速度。活化烧结是指降低烧结活化能Q的烧结方法。
粉末冶金高速工具钢由于其制造工艺的独特性,与铸锻高速钢比较,具有一系列优异性能:
1)无偏析晶粒细小,碳化物细小;2)热加工性好;3)可磨削性好;4)热处理变形小;5)力学性能(韧性,硬度,高温硬度)佳;6)扩大了高速钢合金含量,创造了新的超硬高速钢7)扩大了使用领域
应该根据不同不同的材质来确定烧结的时间和温度,温度大概在它们熔点的80%左右。
粉末冶金高速钢,简称粉冶高速钢,或PM高速钢。采用粉末冶金方法(雾化粉末在热态下进行等静压处理)制得致密的钢坯,再经锻、轧等热变形而得到的高速钢型材,简称粉末高速钢。粉末高速钢组织均匀,晶粒细小,消除了熔铸高速钢难以避免的偏析,因而比相同成分的熔铸高速钢具有更高的韧性和耐磨性,同时还具有热处理变形小、锻轧性能和磨削性能好等优点。粉末高速钢中的碳化物含量大大超过熔铸高速钢的允许范围,使硬度提高到HRC67以上,从而使耐磨性能得到进一步提升。如果采用烧结致密或粉末锻造等方法直接制成外观尺寸接近成品的刀具、模具或零件的坯件,更可取得省工、省料和降低生产所带来的成本的效果。粉末高速钢的价格虽然高于相同成分的熔铸高速钢,但由于性能优越、常规使用的寿命长,用来制造昂贵的多刃刀具如拉刀、齿轮滚刀、铣刀等,仍具有非常明显的经济效益。
第1类与材料的温度特性有关,包括自由表面能、界面能和体积自由能,以及点阵、晶界、表面扩散系数等。
第3类为外部因素,包括烧结气氛、烧结温度、烧结保温时间、升温及降温速度、颗粒表面层附层状态等。
单元系固相烧结纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为绝对熔点温度的2/3一4/5)进行的粉末烧结。
(1)低温阶段(T烧毛0.25T熔)。主要发生金属的回复、吸附气体和水分的挥发、压坯内成形剂的分解和排除。由于回复时消除了压制时的弹性应力,粉末颗粒间接触面积反而相对减少,加上挥发物的排除,烧结体收缩不明显,甚至略有膨胀。此阶段内烧结体密度基本保持不变。
2.活化烧结:是指采用物理或化学的手段使烧结温度降低、烧结时间缩短、烧结体活化烧结性能提高的一种粉末冶金方法.活化烧结工艺分为物理活化烧结工艺和化学活化烧结工艺两大类。
物理活化烧结:物理活化烧结工艺有依靠周期性改变烧结温度、施加机械振动、超声波和外应力等促进烧结过程。
化学活化烧结工艺:(1)预氧化烧结。(2)改变烧结气氛的成分和含量。(3)粉末内添加微量元素。(4)使用超细粉末、高能球磨粉末进行活化烧结。活化烧结大多数都用在钨、钼、铼、铁、钽、钒、铝、钛和硬质化合物材料等的烧结。
常用的烧结设备有箱式炉、管式炉、马弗炉、碳管炉、感应炉、推舟炉、带式炉、辊式炉、反射炉等,分间断式、半连续、连续式等几类。采用的加热方式有电阻加热,以镍铬合金、铁铬铝合金、钨、钼、碳化硅、硅化钼等作为发热元件。还可以用碳管来通电发热,有时也利用坯块本身的电阻。感应加热的应用也很普遍。除电能外,天然气、燃油、煤亦可作为加热能源。根据对温度、升降温速度、气氛、生产的连续与否等要求,选择烧结炉及加热方式。
实现方式活化烧结主要是从3个方面来实现的:(1)改变粉末表面状态,提高粉末表面原子活性和原子的扩散能力。(2)改变粉末颗粒接触界面的特性,以改善原子扩散途径。(3)改善烧结时物质的迁移方式。[2]
活化剂的选择准则(1).活化剂在烧结过程中形成低熔点液相(2).活化剂在基体中的溶解度应低,而基体组元在活化剂中的溶解度要大。(3).活化剂应在烧结过程中偏聚在基体颗粒之间,为基体组元间的物质迁移提供通道。
为了控制周围环境对烧结制品的影响并调整烧结制品成分,在烧结中使用以下几类不同功能的烧结气氛:
1.氧化性气氛,包括纯氧、空气、水蒸气等,用于贵金属的烧结,氧化物弥散强化材料和某些含氧化物质点电接触材料的内氧化烧结以及预氧化活化烧结;
2.还原性气氛,包括氢、分解氨、煤气、转换天然气等,用于烧结时还原被氧化的金属及保护金属不被氧化,大范围的使用在铜、铁、钨、钼等合金制品的烧结中;
烧结制度包括升温、高温烧结、冷却等几个部分。在烧结时,根据自身的需求,能够使用快速升温,也能够使用慢速升温;可以直接升温到最高烧结温度,也可以分阶段逐步升温,如在需预烧或脱除成形剂和润滑剂时的情况,烧结温度和保温时间由金属特性和制品尺寸决定。冷却也有慢冷、快冷和淬火等几种情况。
在烧结过程中,粉末体发生以下一系列变化:表面吸附的水分或气体挥发或分解;应力松弛;发生回复和再结晶;原子在颗粒表面、晶界或晶内扩散,使颗粒间的结合由机械结合逐步转变为冶金结合,化学组分均匀化;在有液相存在时,发生颗粒重排,固相物质的溶解和析出,液相网络提供一物质输运的快速通道。在这些过程的综合作用下,能获得满足一定物理、化学和几何特性要求的材料或零件。
烧结是粉末冶金过程中最重要的工序。在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。
根据致密化机理或烧结工艺条件的不同,烧结可分为液相烧结、固相烧结、活化烧结、反应烧结、瞬时液相烧结、超固相烧结、松装烧结、电阻烧结、电火花烧结、微波烧结和熔浸等。
3.惰性或中性气氛,包括氮、氩、氦及线.渗碳气氛,即CO,CH4及其他碳氢化合物的气体,对于铁及低碳钢具有渗碳作用;
5.渗氮气氛,即NH。以及对某些合金系而言的N2。对于不同合金,上述分类可以有变化。在烧结过程中,在不同阶段可能采用不一样的气氛。
如果是气氛烧结,主要控制气氛的露点,露点太高表示气氛水分含量高,会产生氧化。如果是真空烧结,主要控制真空度,确保炉子的密封性能